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Abstract 

Recently, dissimilar metals have found applications in the process of resistance spot welding (RSW), 

particularly within the electric vehicle industry. Notably, copper and aluminum have gained significant 

importance in these sectors due to their advantageous characteristics for the industry requirements. The 

mechanical behavior of these materials is essential to maintaining structural integrity. The study aims to 

estimate the mechanical behavior of dissimilar RSW joints and optimize welding parameters for Cu-Al joints. 

Hence, understanding the joining processes in the electric vehicle industry to design reliable components. 

Combining different types of materials, such as T2-grade commercially pure copper sheets and aluminum 

AA1050 with the same thickness of 1 mm has been welded. The determination of optimal welding conditions 

takes into account material thicknesses and types. Through tensile-shear testing, welding parameters that yield 

maximal joint strength were identified. Using Minitab 19 software, the Taguchi method helped achieve 

optimized welding parameters. The hardness, fracture characteristics, and weld strength have been investigated. 

Hardness measurements were conducted across the nugget thickness and surface, offering insights into potential 

failure modes. The welding process involves the transition to a liquid state for the aluminum components, 

resulting in the formation of intermetallic compounds. Consequently, crack initiation was observed within the 

aluminum segments, leading to a plug-out fracture mechanism. In contrast, copper exhibits superior strength 

and hardness compared to aluminum, where increased hardness correlates with heightened strength. The 

discrepancy in hardness, especially the lower values observed on the aluminum side, caused fractures to appear 

within the heat affected zone (HAZ). Subsequently, this fracture propagated until pull-out failure was realized. 

The study revealed that dissimilar joining of Cu and Al resulted in an ultimate tensile stress of 26 MPa, while 

similar joining of copper showcased a strength of 98 MPa. Additionally, the symmetric join in aluminum 

exhibited a strength of 93 MPa. The maximum tensile shear force is equal to 512 N at a maximum welding 

current of 14000 A. The pull-out failure mode occurs in the Cu-Al RSW joint. The maximum hardness was 

noted in the fusion zone (FZ). Relevant literature sources have supported and confirmed these outcomes. 

 
Keywords: aluminium, copper, crack, fracture, hardness, RSW, weld strength 

 

1. INTRODUCTION 

 

Resistance spot welding (RSW) is a process used 

to join two or more metal sheets or components 

together. The interface surfaces of most lap 

configurations are joined by employing an electrical 

current. RSW stands out as a superior method for 

fabricating sheet metal due to its simplicity, 

suitability for various field applications, and 

flexibility to accommodate the shape of the 

workpiece (1–6). Many engineering materials that 

are used in applications are subjected to different 

mechanical stresses. Therefore, the assessment of 

crack initiation and prorogation is required to ensure 
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structural integrity (7, 8). Generally, the quality of 

welded joints determines their structural integrity. 

Thus, in every manufacturing process, altering the 

welding procedure and ensuring the quality of the 

welded joints are crucial (9–12). 

The crack of the weld nugget and the structural 

integrity are the main issues in applications under 

cyclic loading, such as automobiles and airplanes; 

see Refs (13–15). The estimation of crack initiation 

and propagation allows for the evaluation of the 

fracture analysis. Observing the onset and spread of 

cracks helps identify flaws early on and ensures the 

strength of welded joints, which lowers the 
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possibility of component failure while in use (16–

18). 

Copper (Cu) and aluminum (Al) offer superior 

mechanical qualities, low weight construction, and 

outstanding thermal and electrical conductivity. 

Hence, the electric vehicle sector uses them (19).   

Because of the significant changes in their 

metallurgical and physical properties, connecting 

these materials to the traditional melting welding 

process is challenging.  

Nowadays, lightweight design is in global 

demand due to energy-saving requirements, 

enhancing crash safety and strength, and the need to 

reduce carbon dioxide emissions and fuel 

consumption (20–24). While the majority of spot 

welds fail due to fatigue, certain joints might 

experience failure under tensile loads. Because of the 

significant changes in their metallurgical and 

physical properties, connecting these materials to the 

traditional melting welding process is challenging. A 

typical load displacement of a spot weld under 

tensile shear loading is depicted in Fig. 1 (25). Peak 

load, elongation, and area under the curve (failure 

energy) can all be used to evaluate the weld strength. 

 
Fig. 1. Load-displacement curve in a tensile 

test; Wmax: energy absorption; Pmax: peak 

load; Lmax: elongation at peak load (25) 

 

Since little research has been done on these 

metals in RSW because of the challenges in fusing 

copper and aluminium, the majority of earlier studies 

advised friction stir welding of these dissimilar 

metals to get around the difficulties in welding 

between Cu and Al due to their different mechanical 

and physical properties. This paper's primary goals 

are to outline the results of mechanical, 

microstructure, and microhardness tests conducted 

both before and after the welding process, as well as 

to explore the failure mechanism of the RSW of Al-

Cu joints under tensile load. 

An investigation was conducted on the hardness 

of the nugget surface and the cross-sectional area. 

The Vickers hardness of the weld nugget fusion 

zone (FZ), heat-affected zone (HAZ), and base 

material (BM) over the surface and through the 

cross-section of the weld nugget were measured. The 

connection between the weld strength and the 

hardness distribution was investigated. Furthermore, 

the failure was analysed, and the structural integrity 

of the spot weld of Al-Cu alloys was shown by the 

use of the tensile shear test. Therefore, crack 

initiation and propagation have been estimated. 

 

2. EXPERIMENTAL WORK 

 

2.1. Materials  

RSW has been used of dissimilar materials, 

namely copper T2 grade commercially pure copper 

sheet and AA1050, with a thickness of 1 mm. They 

have wide uses in industry, such as electric cars, due 

to the properties of these materials, the most 

important of which is electrical conductivity 

(10,11,26). The chemical composition was examined 

using a spectrometer to verify the used metals; see 

Fig. 2.  

. 
Fig. 2. Optical Emission Spectrometer 

 

Chemical composition is one of the most 

important engineering tests carried out by X-ray and 

optical emission spectroscopy (27). Table 1 shows 

the results of the chemical composition. 

 

Table 1. Compositions chemical of the materials 

Sample % Si Fe Cu Mn Mg Cr Ni Zn Ti Pb Sn V AL 

Al AA1050 0.0477 0.482 0.048 0.0036 0.0012 0.0019 0.0076 0.0027 0.0211 0.0042 0.0098 0.0211 99.5 

              

Sample % Zn Pb P Mn Fe Ni Si Mg AL Cu 
Sample 

% 
Zn Pb 

Cu T2 pure 

copper 

sheets 

0.003 
0.000

3 
0.000

8 
0.0004 0.007 0.0002 0.0008 0.0001 0.0029 ≈100 

Cu T2 

pure 
copper 

sheets 

0.003 
0.00
03 
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2.2 Welding Parameters  

This work aims to investigate mechanical 

analysis for resistance spot welding joints. The 

optimum welding parameters were determined 

according to the sheet and metal thicknesses. In 

similar welding materials, we can easily specify the 

welding parameters, according to the standard AWS 

C1.1 M/C1 (28). These optimal parameters were 

determined after welding many samples. Then 

conducting a practical tensile test, and adopting the 

sample with the highest tensile strength. The process 

was made better by applying the Taguchi approach. 

One of the best techniques for optimizing reduces the 

trial number by choosing the most efficient 

parameters and arranging the tests into an orthogonal 

array (29).  Consequently, the welding energy was 

determined, energy produced depends on the 

electrical current, time of current flow, and contact 

resistance (i.e. electrode pressure) (30,31). 

The major effects plot illustrates that all of the 

parameters appear to influence the variation of 

response (tensile force); see Fig. 3. This method is 

utilized to examine the impact of each welding 

parameter on the tensile force independently. 

 
Fig. 3. Main effects plot of tensile force 

 

Finally, the optimum RSW parameters calculate 

at maximum tensile force (Fig. 3). Table 2 contains 

a list of the spot-welding parameters that were 

employed in this study. 

 
Table 2. RSW Parameters 

Weld Current (Amp.) Force (N) Weld Time (Sec) 

14000 8800 1 

 

2.3 Mechanical properties for base metals and 

RSW joint 

2.3.1 Tensile test  

The ASTM E-8 standard for thin specimens 

(ASTM Int. 2009) was followed in the preparation 

of the specimens of Al and Cu to the stipulated 

dimensions (32). For each metal, three specimens 

were tested for more accuracy in results; see Fig. 4.  

A universal testing apparatus was used for the 

tensile testing. A 1 mm/min deformation rate was 

applied. The maximum load before failure was used 

to calculate the strength. 

 

   
Fig. 4. Tensile-shear specimens and 

dimensions 

 
2.3.2 Tensile-shear test for RSW joints 

Two sheets 100 mm long, 25 mm wide with 

thickness 1 mm and overlapping 25 mm, have been 

welded with a single spot weld nugget according to 

EN ISO 14329 standard (33); see Fig. 5. 

 

 

Fig. 5. RSW specimen dimensions 

 

RSW specimens were gripped with alignment 

tabs of a thickness similar to that of the specimens  

to ensure the tensile force was applied to the weld 

spot and to avoid bending (34); see Fig. 6. The 

tensile shear test findings were made more accurate 

by repeating the trials and using the average result. 
 

             
                             a)                                 b) 

Fig. 6. Tensile shear test: a) Schematic of the 

specimens with Shims; b) Specimens gripped 

 

Following the tensile shear test, the pull-out 

failure and fracture propagation were investigated 

using the macroscopic device; see Fig. 7. 
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Fig. 7. Macroscopic device 

 

2.3.3 Micro hardness test 

In this part, the Vickers microhardness testing 

device was used, see Figure 8 (a). The size of an 

impression made under load by a pyramid-shaped 

diamond indenter is used to determine a material's 

hardness (35) (36) (37). The micro hardness of the 

cross-section and top surface were computed; see 

Fig. 8 (b). The cross-section of RSW joint sample 

prepared by cutting it transversely and using a 

special grip to fix the sample; see Fig. 8 (c, d). A 0.98 

N applied load and a 15-second dwell period were 

employed. 

 

   
                 a)                                        b) 

 
                c)                                         d) 

Fig. 8. a) Vickers Micro Hardness Testing 

device; b) Surface Micro Hardness 

Measurement for RSW Joint; c) Cross-

Section Micro Hardness Specimen with 

Special Grip; d) Cross-Section Micro 

hardness measurement 

 

For cross-section micro hardness, the welding 

sample was cut horizontally and the hardness was 

measured on two sides Al and Cu; see Fig. 9. 

 
Fig. 9.  Cross-section micro hardness 

 

2.3.4 Microstructure test 

To conduct the microstructure analysis, the 

microscope and mounting samples have been used; 

see Fig. 10. 

 

 
                 a)                                      b) 

Fig. 10. a) Embedded sample; b) Microscopic 

device (10)   

 

The specimen for microstructure examination 

was prepared by following steps: 

1. The specimens are small in size; cold 

compounding was done by hand with acrylic 

resin (pink and translucent) 

2. Grinding the mounted specimen on global 

polishing and grinding machines using silicon 

carbide grinding papers of 200, 320, 400, 600, 

800, 1000, 1200, and 1500 grains per square 

inch, respectively. 

3. As soon as the grinding phase was finished, the 

polishing phase got underway. It required using 

a specific polishing cloth, polishing with an 

alumina solution (Al2O3), spinning the disc at 

400 rpm, and then washing it with water.  

4. The etching stage started after the polishing 

stage. Placing the specimen in the etching 

solution was part of the etching procedure, 

which was very important to modify according 

to the concentration. The etching solution in 

this study is 5g FeCl2, 50 mL HCl, and 100 mL 

H2O, (24)  

5. Apply the etching for a few seconds; thereafter, 

in accordance with ASTM E 407-99, 

specimens were cleaned with water and dried 

using hot, forced air to avoid surface oxidation 

(38); see Fig. 10 a. 

6. Using a microscope with a digital camera; see 

Fig. 10 b. 
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3. RESULTS AND DISCUSSION 

 

3.1 Mechanical properties  

The mechanical characteristics, like tensile and 

yield strengths, for pre-welded metals (Cu and Al) 

and RSW joints have been founded; see Table 3.   

 
Table 3. Mechanical properties pre-weld metals and RSW 

joints 

Mechanical Characteristics 

Metals  σy (MPa) UTS (MPa) 

Cu-grade T2 135 221 

Al-AA1050 119 128 

Cu-Al joint 10 26 

Cu-Cu joint 37 98 

Al-Al joint 39 93 

 

The obtained stress-strain curve for pre-weld Cu 

and Al and post-weld joints is displayed in Fig. 11. 

 

 
Fig. 11. Stress with strain curve for pre-weld 

metals and post-weld joints. Al-1050, and 

pure Cu 

 

Copper has an increased tensile strength in 

comparison with aluminum because the ductility of 

copper is greater than that of aluminum and therefore 

requires greater stress to fail. In RSW joints, the 

maximum tensile stress for similar weld joints is 

greater than 75% of the highest tensile strength for 

dissimilar weld joints; see Fig. 11. Because of the 

differences in the two welded dissimilar materials' 

melting temperatures and thermal conductivities, a 

lower number indicates a weaker junction. 

Increasing the concentration of heat makes the 

resulting joint much weaker. In dissimilar welds, two 

different metals are welded together that have 

different chemical compositions and mechanical 

properties (12). 

In order to create robust and dependable joints, 

dissimilar metal welding is a complicated procedure 

that needs to be carefully considered in many 

different ways. The challenges associated with 

mismatched material properties, intermetallic 

formation, and other factors often lead to reduced 

maximum tensile strength compared to similar 

joints. The ultimate tensile strength reached 26 MPa 

for joining Cu and Al in dissimilar conditions and 98 

MPa for joining similar copper, and the symmetric 

join in aluminum was 93 MPa. 

3.2 RSW tensile shear test  

Tensile shear testing for RSW joints is the main 

mechanical test to determine the weld strength. It’s 

the most widely used test due to the simple specimen 

form and type of loading. It shows if the weld meets 

the required levels of strength and ductility (12). A 

universal testing apparatus with a deformation rate 

of 1 mm/min was used to perform tensile-shear 

testing. The shear strength force of the welded 

junction at various welding currents is displayed in 

Table 4. Because it influences the welding heat input 

(see Fig. 12), which greatly influences the welding 

quality and, consequently, the welding duration and 

electrode force constant, the welding current is the 

most important process parameter (39).  

 
Table 4. Mechanical properties of a dissimilar RSW joint 

Trial 

Weld 

Current 

(Amp.) 

Electrodes 

Force (N) 

Weld 

Time 

(sec) 

Sheer 

Force 

(N) 

1 11000 8800 1 440 

2 11500 8800 1 444 

3 12000 8800 1 452 

4 12500 8800 1 487 

5 13000 8800 1 492 

6 13500 8800 1 499 

7 14000 8800 1 512 

 

 
Fig. 12. Effect of welding current on RSW 

tensile shear force 

 

The higher welding current increasing tensile 

shear force. Because a higher welding current 

generates more heat. 

Hence, resulting in better fusion and a stronger 

bond between the joined materials. As a result, there 

was an increase in the tensile shear force and 

bonding strength of the resistance spot-welded 

connection (40).  The maximum tensile shear force is 

equal to 512 N at maximum welding current 14000 

A. 

3.3 Failure analysis 

Three main forms of failure are frequently 

observed in spot welds: pullout failure (PF), partial 
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interfacial (PIF), and interfacial (IF) (31). The crack 

spreads across the FZ that divides the two sheets in 

IF mode (41). When a fracture is in PIF mode, it first 

spreads along the interface before turning 

perpendicular to the centerline and moving in the 

direction of thickness. In PF mode, one sheet is 

removed from the nugget. Hence, the fracture could 

commence within the BM, HAZ, or HAZ-FZ. In 

addition, the residual stresses around the weld toe of 

the nugget play a role (42). The crack around the 

weld nugget may be subjected to biaxial stresses 

during propagation; see Ref. (43)  

When the internal tensile stresses exceed the 

strength of the weld joints (i.e., the weld metal, the 

base metal, or both), the crack has been initiated, and 

the specimen will be deformed (44). The formation 

and spread of cracks are also influenced by the 

residual stress distribution surrounding the weld 

nugget; see Refs. (42,45). The stress increases 

significantly once the crack is started, and the crack 

may spread. One or multiple cracks around the 

nugget can be propagated simultaneously; see Fig. 

13. 

 
Fig. 13. Tensile test for welded joints 

 

Figure 13 shows the crack propagation until the 

failure. The crack started on the aluminum side and 

propagated. Different crack propagations have been 

recorded during the test until the maximum stress.  

A crack grows around the nugget in HAZ. Hence, 

the plug-out fracture was produced. Traditionally, 

HAZ is a critical zone in the welding area where the 

properties can be reduced significantly after welding 

due to cracking (2,31,46). In this zone, the metal is 

not melted. In addition, the heat changes the metal's 

microstructure. These changes in structure can 

reduce the metal's strength (47). Hence, the weld 

nugget will be withdrawn due to this cracking in the 

HAZ. 

Figure 14 (a-g) shows the fracture in the 

aluminum nugget zone. The crack was recorded 

during the time of the tension. In addition, this study 

indicates that the hardness of the weld nugget gives 

an indication of the failure behavior. Because the 

hardness and strength of copper weld nuggets are 

higher than those of aluminum, the crack was 

propagated from aluminum only; see Fig. 11. 

The macroscopic test shows that PF mode occurs 

in Cu-Al RSW joint. Initiated of crack from the 

periphery of the weld nugget on the aluminum side 

toward the copper side. The HAZ-BM interface on 

the aluminum side is where the failure of the welded 

specimen under static loading began; see Fig. 15. 

Traditionally, this is associated significantly with the 

hardness variation. 

 
a) b) c) d) e) f) g) 

Fig. 14. Initiation with propagation of crack 

in tensile shear test during consecutive time 

periods: a) 0 min; b) 1 min; c) 2 min; d) 3 

min; e) 4 min; f) 5 min; g) final failure mode 

 

 

         a)    b) 

 
c) 

Fig. 15. PF modes in Al-Cu RSW: a) Cu side 

pull out the Al-nugget side, 10 x; b) Al-

nugget side, 10 x; c) Cu and Al nugget after 

failure 

3.4 Micro hardness test  

This test aims to show the relationship between 

hardness and weld strength. In addition, estimate the 

failure sites. Since hardness is a measure of a 

material's resistance against scratching or 

indentation (34,48), it can give an indication of the 

crack initiation sites. 

There are wo types of hardness tests for RSW Cu 

and Al, namely cross-section microhardness and 

surface hardness (i.e., over the outer surface of the 

nugget). Surface hardness measurement was not 

presented in previous works. This is because the 

surface hardness in welding of similar metals is clear 

and equal on both surfaces, but here lies the problem 

because of the difference in the welded metals, 

which results in uneven hardness for both surfaces. 

 

3.4.1 Surface hardness 

The surface hardness was measured using the 

device in Fig. 7a. A straight line starts from the first 

overlap edge toward the other edge overlap for two 

side RSW joints; see Fig. 7c. The main objective of 

this test is to indicate the hardness of FZ, BM, and 

HAZ on the RSW joint surface from two sides. 

Different points were taken to check the hardness 

at different distances along the welded sample. Two 

sides of the samples were investigated. The first side 
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represents the copper welding area, Cu nugget, and 

the second side represents the aluminum welding 

area, Al nugget; see Fig. 16 (a, b). 

 
a)         b) 

Fig. 16. Welded joints: a) Cu-weld nugget; 

(b) Al-weld nugget 

Table 5. The outer-surface hardness 

(Cu) Nugget / Fig. 16 a (Al) Nugget / Fig. 16 b 

Position 

mm 

Hardness 

Hv 

Position 

mm 

Hardness 

Hv 

 

 

Base 

Metal 

Cu 

 

0 77.5  

 

 

 

Base 

Metal 

Al 

 

 

 

 

0 40 

1 80 1 40 

2 75 2 42 

3 79 3 40 

4 81 4 41 

5 82 5 42 

6 78 6 40 

7 80 7 41 

8 80 8 41 

HAZ 9 87 HAZ 9 48 

Cu 

Nugget 

1

0 
90 

Al 

Nugget 

1

0 
48 

1

1 
91 

1

1 
46 

1

3 
88 

1

3 
48 

1

4 
87 

1

4 
45 

1

5 
90 

1

5 
48 

HAZ 
1

6 
85 HAZ 

1

6 
46 

Base 

Metal 

Cu 

1

7 
78 

Base 

Metal 

Al 

 

1

7 
40 

1

8 
80 

1

8 
41 

1

9 
79 

1

9 
40 

2

0 
79 

2

0 
42 

2

1 
81 

2

1 
39 

2

2 
80 

2

2 
41 

2

3 
78 

2

3 
40 

2

4 
78 

2

4 
42 

2

5 
79 

2

5 
40 

 

Table 5 shows the values of the hardness for the 

two sides of the welded joints, top and bottom; see 

Fig. 16 a, and b, respectively. In general, the 

hardness of copper is higher than that of aluminum. 

Therefore, the fracture from the aluminum weld 

nugget has been noticed. The maximum hardness at 

the aluminum and copper weld nugget surfaces is 48 

Hv, and 91 Hv, respectively. Then it reduces 

gradually until it reaches a constant value of the base 

metals; see Fig. 16. It is mostly dependent on the 

distribution of temperatures as well as additional 

factors like the kind and thickness of metals (49,50). 

The difference in hardness between two sides of the 

RSW joint means the difference in strength between 

the two surfaces of the welded joint. 

 
Fig. 17. Surface hardness for RSW joint 

 

3.4.2 Cross-Section micro hardness 

For this test, the welding sample was cut 

horizontally and the hardness was measured on two 

sides Al and Cu; see Fig. 8. 

The weld nugget zone, HAZ, and BM for both 

spots of the welded sample with ideal welding 

settings were the three locations for which the 

Vickers micro hardness measurements were carried 

out horizontally across the spot welds' cross-section; 

see Fig. 18.  In order to obtain an accurate 

measurement, the sample was held in a special 

holder. The measurements were taken at a distance 

of 1 mm between each point along the cross-section 

area; see Table 6. The relative decrease in hardness 

occurs in the HAZ region up to the base metal. 

The microhardness of Al 1050 with three 

different thicknesses (0.6, 1, and 1.5 mm) was 

investigated in Ref. (51). The comparison with the 

current study at a thickness of 1 mm is shown in 

Table 6. 

 
Fig. 18. Micro-hardness for RSW Joints as compared 

with Ref. (51), thick. = 1 mm  
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Table 6. Cross-section micro-hardness 

(Al) side 

1 mm thickness 

(Cu) side 

1 mm thickness 

(Al) (51) 
1 mm thickness 

Position 

mm 

Hardness 

Hv 

Position 

mm 

Hardness 

Hv 

Position 

mm 

Hardness 

Hv 

0 35 0 77 0 31 

1 44 1 82 1 31 

2 37 2 81 2 32 

3 37 3 79 3 31 

4 40 4 72 4 31 

5 39 5 80 5 31 

6 42 6 83 6 32 

7 41 7 77 7 31 

8 38 8 79 8 31 

9 44 9 87 9 35 

10 48 10 90 10 39 

11 45 11 93 11 39 

12 47 12 90 12 39 

13 46 13 99 13 39 

14 47 14 95 14 39 

15 48 15 97 15 39 

16 45 16 89 16 35 

17 42 17 82 17 32 

18 37 18 83 18 31 

19 39 19 77 19 31 

20 35 20 75 20 32 

21 34 21 79 21 32 

22 36 22 80 22 31 

23 40 23 79 23 32 

24 42 24 82 24 31 

25 39 25 80 25 31 

The highest value of hardness was in the center of 
the nugget. It reached 99 Hv, 48 Hv, 39 Hv for Cu, 
Al, and Ref. (51), respectively. 

Figure 18 shows the through-nugget hardness 
distribution. The hardness distributions agree with 
those from the outer surface measurements. In all 
cases, Cu has a higher hardness than aluminum. In 
addition, the maximum values of hardness were at 
the weld nugget. Therefore, the aluminum starts to 
deform and fracture before the copper weld area. 
Vickers hardness increased with decreasing grain 
size and density (52).   

 
Fig. 19. RSW zones of the Al-Cu Joint 

 

Figure 19 shows the weld zones under a 
microscopic device. In the cross-section of 
resistance spot welding joints, three main zones can 
be observed. The first zone is the Fusion Zone, which 
represents the area where the base metals have been 
melted and fused together during the welding 
process. This region exhibits a distinct 
microstructure as a result of the solidification of the 
molten metal. The second zone is the HAZ, 
surrounding the Fusion Zone, where the base metals 
have been subjected to high temperatures during 
welding but have not undergone complete melting. 
In this zone, there are microstructural changes due to 
thermal cycles, potentially leading to alterations in 
material properties. Finally, the third zone is BM, 
which refers to the unaffected parent material that 
has not experienced significant thermal or 
microstructural variations that occur during welding. 
The received metal is used as a reference point for 
comparison with the heat-affected zone and fusion 
zone. 

 

4. CONCLUSIONS 

 
This work studied the strength and hardness of 

RSW joints made of aluminum (AA1050) and T2-
grade commercially pure copper sheets. Tensile 
testing is commonly used to assess structural 
integrity. Hardness testing can also provide insight 
into weld strength. Thus, the weld strength was 
analyzed by evaluating hardness and crack initiation. 
The following conclusions were obtained: 
1. Taguchi design technique can be used for 

optimizing RSW parameters for dissimilar joints, 
which represent the maximum tensile force. 

2. Increasing welding current and welding time 
enhanced nugget size and mechanical strength. 
However, careful control of these factors is 
necessary to prevent expulsion in the welding 
zone. 

3. Fracture behavior becomes evident once crack 
initiation and propagation occur. Tensile tests 
revealed that pull-out fractures happened more 
quickly on the aluminum part than on the copper 
part. Consequently, the weld nugget's strength is 
higher on the Cu-side. 

4. A new relationship between hardness and tensile 
strength was established to assess failure and 
strength. Weld nugget portions with higher 
hardness exhibited greater resistance to cracking, 
and thus, hardness distribution estimates crack 
initiation. 

5. Surface hardness displayed higher values on the 
copper side, indicating that pull-out fractures are 
more likely in the aluminum sheet. 

6. During the tensile shear test, crack propagation 
occurred around the Al-nugget within the HAZ. 

7. The highest hardness was at the weld's center. 
Hardness then decreased towards the HAZ and 
BM, which exhibited roughly equal hardness 
values. 

8. A microscopic examination of RSW revealed 
that the BM, HAZ, and FZ had the smallest grain 
sizes. 
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